6-keto Prostaglandin F$_{1\alpha}$ ELISA Kit

Item No. 515211
TABLE OF CONTENTS

GENERAL INFORMATION 3 Materials Supplied
4 Safety Data
4 Precautions
5 If You Have Problems
5 Storage and Stability
5 Materials Needed But Not Supplied

INTRODUCTION 6 Background
6 About This Assay
7 Description of AChE Competitive ELISAs
8 Biochemistry of Acetylcholinesterase
10 Definition of Key Terms

PRE-ASSAY PREPARATION 11 Buffer Preparation
12 Sample Preparation
12 Sample Purification

ASSAY PROTOCOL 14 Preparation of Assay-Specific Reagents
18 Plate Set Up
19 Performing the Assay

ANALYSIS 22 Calculations
24 Performance Characteristics

RESOURCES 28 Troubleshooting
29 Additional Reading
29 References
30 Plate Template
31 Notes
31 Warranty and Limitation of Remedy

GENERAL INFORMATION

Materials Supplied

<table>
<thead>
<tr>
<th>Item Number</th>
<th>Item</th>
<th>96 wells Quantity/Size</th>
<th>480 wells Quantity/Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>415212</td>
<td>6-keto Prostaglandin F_1α ELISA Antiserum</td>
<td>1 vial/100 dtn</td>
<td>1 vial/500 dtn</td>
</tr>
<tr>
<td>415210</td>
<td>6-keto Prostaglandin F_1α AChE Tracer</td>
<td>1 vial/100 dtn</td>
<td>1 vial/500 dtn</td>
</tr>
<tr>
<td>415214</td>
<td>6-keto Prostaglandin F_1α ELISA Standard</td>
<td>1 vial</td>
<td>1 vial</td>
</tr>
<tr>
<td>400060</td>
<td>ELISA Buffer Concentrate (10X)</td>
<td>2 vials/10 ml</td>
<td>4 vials/10 ml</td>
</tr>
<tr>
<td>400062</td>
<td>Wash Buffer Concentrate (400X)</td>
<td>1 vial/5 ml</td>
<td>1 vial/12.5 ml</td>
</tr>
<tr>
<td>400035</td>
<td>Polysorbate 20</td>
<td>1 vial/3 ml</td>
<td>1 vial/3 ml</td>
</tr>
<tr>
<td>400004/400006</td>
<td>Mouse Anti-Rabbit IgG Coated Plate</td>
<td>1 plate</td>
<td>5 plates</td>
</tr>
<tr>
<td>400012</td>
<td>96-Well Cover Sheet</td>
<td>1 cover</td>
<td>5 covers</td>
</tr>
<tr>
<td>400050</td>
<td>Ellman’s Reagent</td>
<td>3 vials/100 dtn</td>
<td>6 vials/250 dtn</td>
</tr>
<tr>
<td>400040</td>
<td>ELISA Tracer Dye</td>
<td>1 vial</td>
<td>1 vial</td>
</tr>
<tr>
<td>400042</td>
<td>ELISA Antiserum Dye</td>
<td>1 vial</td>
<td>1 vial</td>
</tr>
</tbody>
</table>

If any of the items listed above are damaged or missing, please contact our Customer Service department at (800) 364-9897 or (734) 971-3335. We cannot accept any returns without prior authorization.

WARNING: THIS PRODUCT IS FOR RESEARCH ONLY - NOT FOR HUMAN OR VETERINARY DIAGNOSTIC OR THERAPEUTIC USE.
Safety Data

This material should be considered hazardous until further information becomes available. Do not ingest, inhale, get in eyes, on skin, or on clothing. Wash thoroughly after handling. Before use, the user must review the complete Safety Data Sheet, which has been sent via email to your institution.

Precautions

Please read these instructions carefully before beginning this assay.

The reagents in this kit have been tested and formulated to work exclusively with Cayman Chemical’s 6-keto Prostaglandin F\textsubscript{1\alpha} ELISA Kit. This kit may not perform as described if any reagent or procedure is replaced or modified.

When compared to quantification by LC/MS or GC/MS, it is not uncommon for immunoassays to report higher analyte concentrations. While LC/MS or GC/MS analyses typically measure only a single compound, antibodies used in immunoassays sometimes recognize not only the target molecule, but also structurally related molecules, including biologically relevant metabolites. In many cases, measurement of both the parent molecule and metabolites is more representative of the overall biological response than is the measurement of a short-lived parent molecule. It is the responsibility of the researcher to understand the limits of both assay systems and to interpret their data accordingly.

If You Have Problems

Technical Service Contact Information

- **Phone:** 888-526-5351 (USA and Canada only) or 734-975-3888
- **Email:** techserv@caymanchem.com

In order for our staff to assist you quickly and efficiently, please be ready to supply the lot number of the kit (found on the outside of the box).

Storage and Stability

This kit will perform as specified if stored as directed at -20°C and used before the expiration date indicated on the outside of the box.

Materials Needed But Not Supplied

1. A plate reader capable of measuring absorbance between 405-420 nm.
2. Adjustable pipettes and a repeating pipettor.
3. A source of ‘UltraPure’ water. Water used to prepare all ELISA reagents and buffers must be deionized and free of trace organic contaminants (‘UltraPure’). Use activated carbon filter cartridges or other organic scavengers. Glass distilled water (even if double distilled), HPLC-grade water, and sterile water (for injections) are not adequate for ELISA. **NOTE: UltraPure water is available for purchase from Cayman (Item No. 400000).**
4. Materials used for **Sample Preparation** (see page 12).
INTRODUCTION

Background

Prostacyclin (Prostaglandin I₂; PGI₂) is formed from arachidonic acid primarily by the vascular endothelium and renal cortex.¹² It is a potent vasodilator and inhibitor of platelet aggregation.² PGI₂ is non-enzymatically hydrated to 6-keto PGF₁α (t₁/₂ = 2-3 minutes), and then quickly converted to the major metabolite, 2,3-dinor-6-keto PGF₁α (t₁/₂ = 30 minutes).³-⁵ Prostacyclin was once thought to be a circulating hormone that regulated platelet-vasculature interactions, but the rate of secretion into circulation coupled with the short half-life indicate that prostacyclin functions locally.⁶

Although 6-keto PGF₁α is commonly measured in plasma and urine as an estimate of prostacyclin synthesis, it should be noted that there may be more than one source of PGI₂ in these samples. For instance, venipuncture may cause the release of prostacyclin which will artifactually increase the 6-keto PGF₁α concentration in plasma.⁷ It is also important to remember that approximately 14% of the 6-keto PGF₁α, measured in urine, originates in the plasma whereas the remainder is produced by the kidney.⁶,⁷

About This Assay

Cayman’s 6-keto PGF₁α Assay is a competitive ELISA that can be used for quantification of 6-keto PGF₁α in many different types of samples. The assay has a range from 1.6-1,000 pg/ml and a sensitivity (80% B/B₀) of approximately 6 pg/ml.

Description of AChE Competitive ELISAs

This assay is based on the competition between 6-keto PGF₁α and a 6-keto PGF₁α-acetylcholinesterase (AChE) conjugate (6-keto PGF₁α Tracer) for a limited number of 6-keto PGF₁α-specific rabbit antiserum binding sites. Because the concentration of the 6-keto PGF₁α Tracer is held constant while the concentration of 6-keto PGF₁α varies, the amount of 6-keto PGF₁α Tracer that is able to bind to the rabbit antiserum will be inversely proportional to the concentration of 6-keto PGF₁α in the well. This rabbit antiserum 6-keto PGF₁α (either free or tracer) complex binds to the mouse monoclonal anti-rabbit IgG that has been previously attached to the well. The plate is washed to remove any unbound reagents and then Ellman’s Reagent (which contains the substrate to AChE) is added to the well. The product of this enzymatic reaction has a distinct yellow color and absorbs strongly at 412 nm. The intensity of this color, determined spectrophotometrically, is proportional to the amount of 6-keto PGF₁α Tracer bound to the well, which is inversely proportional to the amount of free 6-keto PGF₁α present in the well during the incubation; or

\[
\text{Absorbance} \propto \left[\text{Bound 6-keto PGF}_{1\alpha} \text{ Tracer} \right] \propto \frac{1}{\text{[6-keto PGF}_{1\alpha}]}
\]

A schematic of this process is shown in Figure 1, below.

Figure 1. Schematic of the AChE ELISA
Biochemistry of Acetylcholinesterase

The electric organ of the electric eel, *E. electricus*, contains an avid AChE capable of massive catalytic turnover during the generation of its electrochemical discharges. The electric eel AChE has a clover leaf-shaped tertiary structure consisting of a triad of tetramers attached to a collagen-like structural fibril. This stable enzyme is capable of high turnover (64,000 s\(^{-1}\)) for the hydrolysis of acetylthiocholine.

A molecule of the analyte covalently attached to a molecule of AChE serves as the tracer in AChE enzyme immunoassays. Quantification of the tracer is achieved by measuring its AChE activity with Ellman’s Reagent. This reagent consists of acetylthiocholine and 5,5’-dithio-bis-(2-nitrobenzoic acid). Hydrolysis of acetylthiocholine by AChE produces thiocholine (see Figure 2, on page 9). The non-enzymatic reaction of thiocholine with 5,5’-dithio-bis-(2-nitrobenzoic acid) produces 5-thio-2-nitrobenzoic acid, which has a strong absorbance at 412 nm (\(\varepsilon = 13,600\)).

AChE has several advantages over other enzymes commonly used for enzyme immunoassays. Unlike horseradish peroxidase, AChE does not self-inactivate during turnover. This property of AChE also allows redevelopment of the assay if it is accidentally splashed or spilled. In addition, the enzyme is highly stable under the assay conditions, has a wide pH range (pH 5-10), and is not inhibited by common buffer salts or preservatives. Since AChE is stable during the development step, it is unnecessary to use a ‘stop’ reagent, and the plate may be read whenever it is convenient.

![Figure 2. Reaction catalyzed by acetylcholinesterase](image)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetylthiocholine</td>
<td></td>
<td>Hydrolysate of AChE</td>
</tr>
<tr>
<td>Thiocholine</td>
<td></td>
<td>By AChE during turnover</td>
</tr>
<tr>
<td>5,5’-dithio-bis-(2-Nitrobenzoic Acid)</td>
<td></td>
<td>Reaction with thiocholine</td>
</tr>
<tr>
<td>5-thio-2-Nitrobenzoic Acid</td>
<td></td>
<td>Absorbance at 412 nm ((\varepsilon = 13,600))</td>
</tr>
</tbody>
</table>

\(\lambda_{max}: 412\) nm
\(\varepsilon: 13,600\)
Definition of Key Terms

Blank: background absorbance caused by Ellman’s Reagent. The blank absorbance should be subtracted from the absorbance readings of all the other wells, including NSB wells.

Total Activity: total enzymatic activity of the AChE-linked tracer. This is analogous to the specific activity of a radioactive tracer.

NSB (Non-Specific Binding): non-immunological binding of the tracer to the well. Even in the absence of specific antibody a very small amount of tracer still binds to the well; the NSB is a measure of this low binding. Do not forget to subtract the Blank absorbance values.

B₀ (Maximum Binding): maximum amount of the tracer that the antibody can bind in the absence of free analyte.

%B₀/B₀ (%Bound/Maximum Bound): ratio of the absorbance of a particular sample or standard well to that of the maximum binding (B₀) well.

Standard Curve: a plot of the %B₀/B₀ values versus concentration of a series of wells containing various known amounts of analyte.

Dtn: determination, where one dtn is the amount of reagent used per well.

Cross Reactivity: numerical representation of the relative reactivity of this assay towards structurally related molecules as compared to the primary analyte of interest. Biomolecules that possess similar epitopes to the analyte can compete with the assay tracer for binding to the primary antibody. Substances that are superior to the analyte in displacing the tracer result in a cross reactivity that is greater than 100%. Substances that are inferior to the primary analyte in displacing the tracer result in a cross reactivity that is less than 100%. Cross reactivity is calculated by comparing the mid-point (50% B/B₀) value of the tested molecule to the mid-point (50% B/B₀) value of the primary analyte when each is measured in assay buffer using the following formula:

\[
\% \text{ Cross Reactivity} = \left(\frac{\text{50% } B/B_0 \text{ value for the potential cross reactant}}{\text{50% } B/B_0 \text{ value for the primary analyte}} \right) \times 100\%
\]

PRE-ASSAY PREPARATION

NOTE: Water used to prepare all ELISA reagents and buffers must be deionized and free of trace organic contaminants (‘UltraPure’). Use activated carbon filter cartridges or other organic scavengers. Glass distilled water (even if double distilled), HPLC-grade water, and sterile water (for injections) are not adequate for ELISA. UltraPure water may be purchased from Cayman (Item No. 400000).

Buffer Preparation

Store all diluted buffers at 4°C; they will be stable for about two months.

1. **ELISA Buffer Preparation**
 - Dilute the contents of one vial of ELISA Buffer Concentrate (10X) (Item No. 400060) with 90 ml of UltraPure water. Be certain to rinse the vial to remove any salts that may have precipitated. **NOTE**: It is normal for the concentrated buffer to contain crystalline salts after thawing. These will completely dissolve upon dilution with water.

2. **Wash Buffer Preparation**
 - **5 ml vial Wash Buffer Concentrate (400X) (96-well kit; Item No. 400062)**: Dilute to a total volume of 2 liters with UltraPure water and add 1 ml of Polysorbate 20 (Item No. 400035).
 - **OR**
 - **12.5 ml vial Wash Buffer Concentrate (400X) (480-well kit; Item No. 400062)**: Dilute to a total volume of 5 liters with UltraPure water and add 2.5 ml of Polysorbate 20 (Item No. 400035).

Smaller volumes of Wash Buffer can be prepared by diluting the Wash Buffer Concentrate 1:400 and adding Polysorbate 20 (0.5 ml/liter of Wash Buffer).

NOTE: Polysorbate 20 is a viscous liquid and cannot be measured by a regular pipette. A positive displacement pipette or a syringe should be used to deliver small quantities accurately.
Sample Preparation

In general, urine and tissue culture supernatant samples may be diluted with ELISA Buffer and added directly to the assay well. Plasma and other heterogeneous mixtures such as lavage fluids and aspirates often contain contaminants which can interfere in the assay. It is best to check for interference before embarking on a large number of sample measurements. To test for interference, dilute one or two test samples to obtain at least two different dilutions of each sample between approximately 10 and 200 pg/ml (i.e., between 20-80% B/B₀). If the two different dilutions of the sample show good correlation (differ by 20% or less) in the final calculated 6-keto PGF₁α concentration, purification is not required. If you do not see good correlation of the different dilutions, purification is advised. The Purification Protocol, below, is one such method.

General Precautions

- All samples must be free of organic solvents prior to assay.
- Samples should be assayed immediately after collection; samples that cannot be assayed immediately should be stored at -80°C; they will be stable for approximately six months.
- Samples of rabbit origin may contain antibodies which interfere with the assay by binding to the mouse anti-rabbit plate. We recommend that all rabbit samples be purified prior to use in this assay.

Sample Purification

The following protocol is a suggestion only. You may choose a different protocol based on your own requirements, sample type, and expertise. If desired, recovery may be tracked by spiking samples with tritium-labeled 6-keto PGF₁α (³H-6-keto PGF₁α) and follow the spiked-sample recovery calculations in the Analysis section on page 23. Otherwise, omit steps 2 and 8.

Purification Protocol

Materials Needed

1. Tritium-labeled 6-keto PGF₁α (optional)
2. Acetone, saturated NaCl solution, and ethyl acetate

Protocol

1. Aliquot a known amount of each sample into a clean test tube (500 µl is recommended). If your samples need to be concentrated, a larger volume should be used (e.g., a 5 ml sample will be concentrated by a factor of 10, a 10 ml sample will be concentrated by a factor of 20, etc.).
2. Add 10,000 cpm of tritium-labeled 6-keto PGF₁α (³H-6-keto PGF₁α). Use a high specific activity tracer to minimize the amount of radioactive 6-keto PGF₁α as the ELISA will be able to detect the added 6-keto PGF₁α.
3. Add acetone (4X the sample volume) to the sample and vortex 2 x 10 seconds. Incubate at 4°C for five minutes, and centrifuge at 3,000 x g for 10 minutes to remove precipitated proteins. Decant the supernatant into a clean test tube. Evaporate the acetone either by vacuum centrifugation or under a gentle stream of nitrogen.
4. Resuspend in 1 ml saturated NaCl solution (~28%).
5. Add 5 ml of ethyl acetate:acetone (75:25) and vortex 2 x 10 seconds. Transfer the upper fraction to a clean test tube. Add another 5 ml ethyl acetate:acetone (75:25) to the sample, vortex, and combine the upper fraction with the previous extract.*
6. Evaporate to dryness either by vacuum centrifugation or by evaporation under a stream of dry nitrogen. It is imperative that all of the organic solvent be removed as even trace quantities will adversely affect the ELISA.
7. To resuspend the sample, add 500 µl ELISA Buffer. Vortex. It is common for insoluble precipitate to remain in the sample after addition of ELISA Buffer; this will not affect the assay. This sample is now ready for use in the ELISA.
8. Use 50 µl of the resuspended sample for scintillation counting.

*If it is necessary to stop during this purification, samples may be stored in the ethyl acetate/acetone solution at -20°C or -80°C.
Preparation of Assay-Specific Reagents

6-keto Prostaglandin F\textsubscript{1α} ELISA Standard

Equilibrate a pipette tip in ethanol by repeatedly filling and expelling the tip with ethanol several times. Using the equilibrated pipette tip, transfer 100 µl of the 6-keto PGF\textsubscript{1α} ELISA Standard (Item No. 415214) into a clean test tube, then dilute with 900 µl UltraPure water. The concentration of this solution (the bulk standard) will be 10 ng/ml. Store the solution at 4°C; it will be stable for approximately six weeks.

NOTE: If assaying culture media samples that have not been diluted with ELISA Buffer, culture medium should be used in place of ELISA Buffer for dilution of the standard curve.

To prepare the standard for use in ELISA: Obtain eight clean test tubes and number them #1 through #8. Aliquot 900 µl ELISA Buffer to tube #1 and 600 µl ELISA Buffer to tubes #2-8. Transfer 100 µl of the bulk standard (10 ng/ml) to tube #1 and mix thoroughly. The concentration of this standard, the first point on the standard curve, will be 1 ng/ml (1,000 pg/ml). Serially dilute the standard by removing 400 µl from tube #1 and placing in tube #2; mix thoroughly. Next, remove 400 µl from tube #2 and place it into tube #3; mix thoroughly. Repeat this process for tubes #4-8. These diluted standards should not be stored for more than 24 hours.
6-keto Prostaglandin F_{1α} AChE Tracer

Reconstitute the 6-keto PGF_{1α} AChE Tracer as follows:

- **100 dtn 6-keto PGF_{1α} AChE Tracer (96-well kit; Item No. 415210):**
 - Reconstitute with 6 ml ELISA Buffer.

 OR

- **500 dtn 6-keto PGF_{1α} AChE Tracer (480-well kit; Item No. 415210):**
 - Reconstitute with 30 ml ELISA Buffer.

Store the reconstituted 6-keto PGF_{1α} AChE Tracer at 4°C (*do not freeze!*) and use within four weeks. A 20% surplus of tracer has been included to account for any incidental losses.

Tracer Dye Instructions (optional)

This dye may be added to the tracer, if desired, to aid in visualization of tracer-containing wells. Add the dye to the reconstituted tracer at a final dilution of 1:100 (add 60 µl of dye to 6 ml tracer or add 300 µl of dye to 30 ml of tracer).

6-keto Prostaglandin F_{1α} ELISA Antiserum

Reconstitute the 6-keto PGF_{1α} ELISA Antiserum as follows:

- **100 dtn 6-keto PGF_{1α} ELISA Antiserum (96-well kit; Item No. 415212):**
 - Reconstitute with 6 ml ELISA Buffer.

 OR

- **500 dtn 6-keto PGF_{1α} ELISA Antiserum (480-well kit; Item No. 415212):**
 - Reconstitute with 30 ml ELISA Buffer.

Store the reconstituted 6-keto PGF_{1α} ELISA Antiserum at 4°C. It will be stable for at least four weeks. A 20% surplus of antiserum has been included to account for any incidental losses.

Antiserum Dye Instructions (optional)

This dye may be added to the antiserum, if desired, to aid in visualization of antiserum-containing wells. Add the dye to the reconstituted antiserum at a final dilution of 1:100 (add 60 µl of dye to 6 ml antiserum or add 300 µl of dye to 30 ml of antiserum).
Plate Set Up

The 96-well plate(s) included with this kit is supplied ready to use. It is not necessary to rinse the plate(s) prior to adding the reagents. NOTE: If you do not need to use all the strips at once, place the unused strips back in the plate packet and store at 4°C. Be sure the packet is sealed with the desiccant inside. Each plate or set of strips must contain a minimum of two blanks (Blk), two non-specific binding wells (NSB), two maximum binding wells (B0), and an eight point standard curve run in duplicate. NOTE: Each assay must contain this minimum configuration in order to ensure accurate and reproducible results. Each sample should be assayed at two dilutions and each dilution should be assayed in duplicate. For statistical purposes, we recommend assaying samples in triplicate. A suggested plate format is shown in Figure 4, below. The user may vary the location and type of wells present as necessary for each particular experiment. The plate format provided below has been designed to allow for easy data analysis using a convenient spreadsheet offered by Cayman (see page 22, for more details). We suggest you record the contents of each well on the template sheet provided (see page 30).

Performing the Assay

Pipetting Hints

- Use different tips to pipette each reagent.
- Before pipetting each reagent, equilibrate the pipette tip in that reagent (i.e., slowly fill the tip and gently expel the contents, repeat several times).
- Do not expose the pipette tip to the reagent(s) already in the well.

Addition of the Reagents

1. ELISA Buffer
 Add 100 µl ELISA Buffer to NSB wells. Add 50 µl ELISA Buffer to B0 wells. If culture medium was used to dilute the standard curve, substitute 50 µl of culture medium for ELISA Buffer in the NSB and B0 wells (i.e., add 50 µl culture medium to NSB and B0 wells and 50 µl ELISA Buffer to NSB wells).

2. 6-keto Prostaglandin F1α ELISA Standard
 Add 50 µl from tube #8 to both of the lowest standard wells (S8). Add 50 µl from tube #7 to each of the next two standard wells (S7). Continue with this procedure until all the standards are aliquoted. The same pipette tip should be used to aliquot all the standards. Before pipetting each standard, be sure to equilibrate the pipette tip in that standard.

3. Samples
 Add 50 µl of sample per well. Each sample should be assayed at a minimum of two dilutions. Each dilution should be assayed in duplicate (triplicate recommended).

4. 6-keto Prostaglandin F1α AChE Tracer
 Add 50 µl to each well except the TA and the Blk wells.

5. 6-keto Prostaglandin F1α ELISA Antiserum
 Add 50 µl to each well except the TA, the NSB, and the Blk wells.
<table>
<thead>
<tr>
<th>Well</th>
<th>ELISA Buffer</th>
<th>Standard/Sample</th>
<th>Tracer</th>
<th>Antiserum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blk</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TA</td>
<td>-</td>
<td>-</td>
<td>5 µl (at devl. step)</td>
<td>-</td>
</tr>
<tr>
<td>NSB</td>
<td>100 µl</td>
<td>-</td>
<td>50 µl</td>
<td>-</td>
</tr>
<tr>
<td>B_0</td>
<td>50 µl</td>
<td>-</td>
<td>50 µl</td>
<td>50 µl</td>
</tr>
<tr>
<td>Std/Sample</td>
<td>-</td>
<td>50 µl</td>
<td>50 µl</td>
<td>50 µl</td>
</tr>
</tbody>
</table>

Table 1. Pipetting summary

Incubation of the Plate
Cover each plate with plastic film (Item No. 400012) and incubate 18 hours at 4°C.

Development of the Plate
1. Reconstitute Ellman’s Reagent immediately before use (20 ml of reagent is sufficient to develop 100 wells):

 100 dtw vial Ellman’s Reagent (96-well kit; Item No. 400050): Reconstitute with 20 ml of UltraPure water.

 OR

 250 dtw vial Ellman’s Reagent (480-well kit; Item No. 400050): Reconstitute with 50 ml of UltraPure water.

 NOTE: Reconstituted Ellman’s Reagent is unstable and should be used the same day it is prepared; protect the Ellman’s Reagent from light when not in use. Extra vials of the reagent have been provided should a plate need to be re-developed or multiple assays run on different days.

2. Empty the wells and rinse five times with Wash Buffer.
3. Add 200 µl of Ellman’s Reagent to each well.
4. Add 5 µl of tracer to the TA wells.
5. Cover the plate with plastic film. Optimum development is obtained by using an orbital shaker equipped with a large, flat cover to allow the plate(s) to develop in the dark. This assay typically develops (i.e., B_0 wells ≥0.3 A.U. (blank subtracted)) in 90-120 minutes.

Reading the Plate
1. Wipe the bottom of the plate with a clean tissue to remove fingerprints, dirt, etc.
2. Remove the plate cover being careful to keep Ellman’s Reagent from splashing on the cover. *NOTE: Any loss of Ellman’s Reagent will affect the absorbance readings. If Ellman’s Reagent is present on the cover, use a pipette to transfer the Ellman’s Reagent into the well. If too much Ellman’s Reagent has splashed on the cover to easily redistribute back into the wells, wash the plate three times with wash buffer and repeat the development with fresh Ellman’s Reagent.*
3. Read the plate at a wavelength between 405 and 420 nm. The absorbance may be checked periodically until the B_0 wells have reached a minimum of 0.3 A.U. (blank subtracted). The plate should be read when the absorbance of the B_0 wells are in the range of 0.3-1.0 A.U. (blank subtracted). If the absorbance of the wells exceeds 1.5, wash the plate, add fresh Ellman’s Reagent and let it develop again.
Many plate readers come with data reduction software that plot data automatically. Alternatively a spreadsheet program can be used. The data should be plotted as either %B/B₀ versus log concentration using a four-parameter logistic fit or as logit B/B₀ versus log concentration using a linear fit. NOTE: Cayman has a computer spreadsheet available for data analysis. Please contact Technical Service or visit our website (www.caymanchem.com/analysis/elisa) to obtain a free copy of this convenient data analysis tool.

Calculations

Preparation of the Data

The following procedure is recommended for preparation of the data prior to graphical analysis.

NOTE: If the plate reader has not subtracted the absorbance readings of the blank wells from the absorbance readings of the rest of the plate, be sure to do that now.

1. Average the absorbance readings from the NSB wells.
2. Average the absorbance readings from the B₀ wells.
3. Subtract the NSB average from the B₀ average. This is the corrected B₀ or corrected maximum binding.
4. Calculate the B/B₀ (Sample or Standard Bound/Maximum Bound) for the remaining wells. To do this, subtract the average NSB absorbance from the S1 absorbance and divide by the corrected B₀ (from Step 3). Repeat for S2-S8 and all sample wells. (To obtain %B/B₀ for a logistic four-parameter fit, multiply these values by 100.)

NOTE: The TA values are not used in the standard curve calculations. Rather, they are used as a diagnostic tool; the corrected B₀ divided by the actual TA (10X measured absorbance) will give the %Bound. This value should closely approximate the %Bound that can be calculated from the Sample Data (see page 24). Erratic absorbance values and a low (or no) %Bound could indicate the presence of organic solvents in the buffer or other technical problems (see page 28 for Troubleshooting).

Plot the Standard Curve

Plot %B/B₀ for standards S1-S8 versus 6-keto PGF₁α concentration using linear (y) and log (x) axes and perform a 4-parameter logistic fit. Alternatively the data can also be linearized using a logit transformation. The equation for this conversion is shown below. NOTE: Do not use %B/B₀ in this calculation.

\[
\text{logit } \left(\frac{B}{B_0} \right) = \ln \left[\frac{B}{B_0}/(1 - B/B_0) \right]
\]

Plot the data as logit (B/B₀) versus log concentrations and perform a linear regression fit.

Determine the Sample Concentration

Calculate the B/B₀ (or %B/B₀) value for each sample. Determine the concentration of each sample using the equation obtained from the standard curve plot. NOTE: Remember to account for any concentration or dilution of the sample prior to the addition to the well. Samples with %B/B₀ values greater than 80% or less than 20% should be re-assayed as they generally fall out of the linear range of the standard curve. A 20% or greater disparity between the apparent concentration of two different dilutions of the same sample indicates interference which could be eliminated by purification.

Spiked-Sample Recovery Calculation

\[\text{Recovery Factor} = \frac{10 \times \text{cpm of sample}}{[\text{³H}]-6\text{-keto PGF}_{1\alpha} \text{ added to sample (cpm)}}\]

\[6\text{-keto PGF}_{1\alpha} \text{ (pg)} \text{ in purified sample} = \left(\frac{\text{Value from ELISA (pg/ml)} \times \text{Recovery Factor} \times 0.5 \text{ ml} - \text{added} [\text{³H}]-6\text{-keto PGF}_{1\alpha} \text{ (pg)}}{6\text{-keto PGF}_{1\alpha} \text{ (pg/ml)}} \right) \times \text{Volume of sample used for purification (ml)}\]

Total 6-keto PGF₁α in sample (pg/ml) = \frac{6\text{-keto PGF}_{1\alpha} \text{ (pg)} \text{ in purified sample}}{\text{Volume of sample used for purification (ml)}}
Performance Characteristics

Sample Data
The standard curve presented here is an example of the data typically produced with this kit; however, your results will not be identical to these. You must run a new standard curve. Do not use the data below to determine the values of your samples. Your results could differ substantially.

<table>
<thead>
<tr>
<th>Dose (pg/ml)</th>
<th>Raw Data</th>
<th>Corrected</th>
<th>%B/B₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000</td>
<td>0.065</td>
<td>0.059</td>
<td>12.8</td>
</tr>
<tr>
<td>400</td>
<td>0.093</td>
<td>0.087</td>
<td>18.6</td>
</tr>
<tr>
<td>160</td>
<td>0.148</td>
<td>0.142</td>
<td>30.5</td>
</tr>
<tr>
<td>64</td>
<td>0.202</td>
<td>0.196</td>
<td>42.3</td>
</tr>
<tr>
<td>25.6</td>
<td>0.285</td>
<td>0.279</td>
<td>60.1</td>
</tr>
<tr>
<td>10.2</td>
<td>0.338</td>
<td>0.332</td>
<td>71.4</td>
</tr>
<tr>
<td>4.1</td>
<td>0.405</td>
<td>0.399</td>
<td>85.9</td>
</tr>
<tr>
<td>1.6</td>
<td>0.437</td>
<td>0.431</td>
<td>92.8</td>
</tr>
</tbody>
</table>

Table 2. Typical results

Figure 5. Typical standard curve
Precision:
The intra- and inter-assay CVs have been determined at multiple points on the standard curve. These data are summarized in the graph on page 25 and in the table below.

<table>
<thead>
<tr>
<th>Dose (pg/ml)</th>
<th>%CV* Intra-assay variation</th>
<th>%CV* Inter-assay variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000</td>
<td>6.7</td>
<td>18.1</td>
</tr>
<tr>
<td>400</td>
<td>9.1</td>
<td>10.8</td>
</tr>
<tr>
<td>160</td>
<td>9.7</td>
<td>8.3</td>
</tr>
<tr>
<td>64</td>
<td>11.6</td>
<td>14.8</td>
</tr>
<tr>
<td>25.6</td>
<td>15.9</td>
<td>15.4</td>
</tr>
<tr>
<td>10.2</td>
<td>13.4</td>
<td>15.6</td>
</tr>
<tr>
<td>4.1</td>
<td>22.2</td>
<td>22.1</td>
</tr>
<tr>
<td>1.6</td>
<td>28.3</td>
<td>20.9</td>
</tr>
</tbody>
</table>

Table 3. Intra- and inter-assay variation
*%CV represents the variation in concentration (not absorbance) as determined using a reference standard curve.

Cross Reactivity:

<table>
<thead>
<tr>
<th>Compound</th>
<th>Cross Reactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-keto Prostaglandin F$_{1\alpha}$</td>
<td>100%</td>
</tr>
<tr>
<td>6-keto Prostaglandin E$_1$</td>
<td>33.9%</td>
</tr>
<tr>
<td>Prostaglandin F$_{1\alpha}$</td>
<td>28%</td>
</tr>
<tr>
<td>Prostaglandin F$_{2\alpha}$</td>
<td>11%</td>
</tr>
<tr>
<td>2,3-dinor-6-keto Prostaglandin F$_{1\alpha}$</td>
<td>4.9%</td>
</tr>
<tr>
<td>PGE$_2$</td>
<td>1.5%</td>
</tr>
<tr>
<td>6,15-diketo-13,14-dihydro-Prostaglandin F$_{1\alpha}$</td>
<td>0.33%</td>
</tr>
<tr>
<td>13,14-dihydro-15-keto Prostaglandin F$_{1\alpha}$</td>
<td>0.05%</td>
</tr>
<tr>
<td>Thromboxane B$_2$</td>
<td>0.05%</td>
</tr>
<tr>
<td>tetranor-PGEM</td>
<td><0.01%</td>
</tr>
<tr>
<td>tetranor-PGFM</td>
<td><0.01%</td>
</tr>
<tr>
<td>Prostaglandin D$_2$</td>
<td><0.01%</td>
</tr>
</tbody>
</table>

Table 4. Cross Reactivity of the 6-keto PGF$_{1\alpha}$ ELISA
Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Causes</th>
<th>Recommended Solutions</th>
</tr>
</thead>
</table>
| Erratic values; dispersion of duplicates | A. Trace organic contaminants in the water source
B. Poor pipetting/technique | A. Replace activated carbon filter or change source of UltraPure water |
| High NSB (>0.100) | A. Poor washing
B. Exposure of NSB wells to specific antibody | A. Rewash plate and redevelop |
| Very low B₀ | A. Trace organic contaminants in the water source
B. Plate requires additional development time
C. Dilution error in preparing reagents | A. Replace activated carbon filter or change source of UltraPure water
B. Return plate to shaker and re-read later |
| Low sensitivity (shift in dose response curve) | Standard is degraded | Replace standard |
| Analyses of two dilutions of a biological sample do not agree (i.e., more than 20% difference) | Interfering substances are present | Purify sample prior to analysis by ELISA¹⁰ |
| Only Total Activity (TA) wells develop | Trace organic contaminants in the water source | Replace activated carbon filter or change source of UltraPure water |

Additional Reading

Go to www.caymanchem.com/515211/references for a list of publications citing the use of Cayman’s 6-keto PGF_{1α} ELISA Kit.

References

Warranty and Limitation of Remedy

Buyer agrees to purchase the material subject to Cayman’s Terms and Conditions. Complete Terms and Conditions including Warranty and Limitation of Liability information can be found on our website.

This document is copyrighted. All rights are reserved. This document may not, in whole or part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form without prior consent, in writing, from Cayman Chemical Company.

©10/06/2022, Cayman Chemical Company, Ann Arbor, MI, All rights reserved. Printed in U.S.A.