PRODUCT INFORMATION

 γ_1 -MSH (human, mouse, rat, bovine) (acetate) Item No. 42252

Formal Name: (3S,6S,9S,12S,15S,21S,24S,27S)-15-((1H-imidazol-

> 5-yl)methyl)-6-((1H-indol-3-yl)methyl)-27-amino-3-(((S)-1-(((S)-1-amino-1-oxo-3-phenylpropan-2-yl)amino)-5-guanidino-1-oxopentan-2-yl) carbamoyl)-12-benzyl-9-(3-guanidinopropyl)-28-(4-

hydroxyphenyl)-24-isopropyl-21-(2-(methylthio)ethyl)-5,8,11,14,17,20,23,26-octaoxo-4,7,10,13,16,19,22,25-

octaazaoctacosanoic acid, acetate γ_1 -Melanocyte-stimulating Hormone

Synonym: Peptide Sequence: YVMGHFRWDRF-NH₂ $C_{72}H_{97}N_{21}O_{14}S \bullet XC_{2}H_{4}O_{2}$ MF:

1,512.8 FW: ≥95% **Purity:** A solid Supplied as: Storage: -20°C Stability: ≥4 years

Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis.

Laboratory Procedures

 γ_1 -MSH (human, mouse, rat, bovine) (acetate) is supplied as a solid. A stock solution may be made by dissolving the γ_1 -MSH (human, mouse, rat, bovine) (acetate) in the solvent of choice, which should be purged with an inert gas. γ_1 -MSH (human, mouse, rat, bovine) (acetate) is sparingly soluble (1-10 mg/ml) in DMSO.

Description

 γ_1 -Melanocyte-stimulating hormone (γ_1 -MSH) is a peptide hormone produced by post-translational processing of proopiomelanocortin (POMC) in the pituitary gland. It selectively binds to melanocortin receptor 1 (MC1R) and MC3R over MC4R and MC5R (K_i s = 0.025, 0.063, >100, and >100 μ M, respectively, in insect cells expressing the human receptors) but also binds to opioid receptors in rat brain tissue homogenates (IC₅₀ = 5.9 μ M).^{2,3} γ_1 -MSH (10 μ M) inhibits contractions induced by the neuropeptide FMRF-amide in isolated M. edulis catch muscle.⁴ Intracisternal administration of γ₁-MSH (0.3 nmol/animal) increases the latency to tail flick in the tail-flick test and inhibits haloperidol-induced catalepsy in mice.⁵ γ_1 -MSH (0.01 nmol/animal) also inhibits LPS-induced nitric oxide (NO) release in mouse forebrain in vivo.²

References

- 1. Rubakhin, S.S., Churchill, J.D., Greenough, W.T., et al. Profiling signaling peptides in single mammalian cells using mass spectrometry. Anal. Chem. 78(20), 7267-7272 (2006).
- Muceniece, R., Zvejniece, L., Liepinsh, E., et al. The MC₃ receptor binding affinity of melanocortins correlates with the nitric oxide production inhibition in mice brain inflammation model. Peptides 27(6), 1443-1450 (2006).
- Oki, S., Nakao, K., Nakai, Y., et al. 'γ-MSH' fragments from ACTH-beta-LPH precursor have an affinity for opiate receptors. Eur. J. Pharmacol. 64(2-3), 161-164 (1980).
- Muneoka, Y. and Saitoh, H. Pharmacology of FMRFamide in Mytilus catch muscle. Comp. Biochem. Physiol. C Comp. Pharmacol. Toxicol. **85(1)**, 207-214 (1986).
- Klusa, V., Germane, S., Svirskis, S., et al. The γ_2 -MSH peptide mediates a central analgesic effect via a GABA-ergic mechanism that is independent from activation of melanocortin receptors. Neuropeptides 35(1), 50-57 (2001).

WARNING
THIS PRODUCT IS FOR RESEARCH ONLY - NOT FOR HUMAN OR VETERINARY DIAGNOSTIC OR THERAPEUTIC USE.

This material should be considered hazardous until further information becomes available. Do not ingest, inhale, get in eyes, on skin, or on clothing. Wash thoroughly after handling. Before use, the user must review the complete Safety Data Sheet, which has been sent via email to your institution.

WARRANTY AND LIMITATION OF REMEDY

subject to Cayman's Terms and Conditions. Complete Terms and Conditions including Warranty and Limitation of Liability information Buyer agrees to purchase the mater can be found on our website.

Copyright Cayman Chemical Company, 10/10/2024

CAYMAN CHEMICAL

1180 EAST ELLSWORTH RD ANN ARBOR, MI 48108 · USA PHONE: [800] 364-9897

[734] 971-3335

FAX: [734] 971-3640 CUSTSERV@CAYMANCHEM.COM WWW.**CAYMANCHEM**.COM