CAS Registry No.: 64072-89-5

Formal Name:	$9 a, 15 \mathrm{~S}$-dihydroxy-11-oxo-prosta-
	$5 \mathrm{Z}, 12 \mathrm{E}$-dien-1-oic acid
Synonym:	$\Delta^{12}-\mathrm{PGD}_{2}$
MF:	$\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{5}$
FW:	352.5
Purity:	$\geq 98 \%$
UV/Vis.:	$\lambda_{\text {max }}: 245 \mathrm{~nm}$
Supplied as:	A solution in methyl acetate
Storage:	$-80^{\circ} \mathrm{C}$
Stability:	≥ 2 years

Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis.

Laboratory Procedures
Δ^{12}-Prostaglandin $\mathrm{D}_{2}\left(\Delta^{12}-\mathrm{PGD}_{2}\right)$ is supplied as a solution in methyl acetate. To change the solvent, simply evaporate the methyl acetate under a gentle stream of nitrogen and immediately add the solvent of choice. Solvents such as ethanol, DMSO, and dimethyl formamide purged with an inert gas can be used. The solubility of $\Delta^{12}-\mathrm{PGD}_{2}$ in these solvents is approximately $30 \mathrm{mg} / \mathrm{ml}$.
$\Delta^{12}-\mathrm{PGD}_{2}$ is sparingly soluble in aqueous buffers. For maximum solubility in aqueous buffers, the methyl acetate solution of $\Delta^{12}-\mathrm{PGD}_{2}$ should be diluted with the aqueous buffer of choice. The solubility of $\Delta^{12}-\mathrm{PGD}_{2}$ in PBS (pH 7.2) is approximately $2 \mathrm{mg} / \mathrm{ml}$. We do not recommend storing the aqueous solution for more than one day.

Description

$P G D_{2}$ is one of the five primary enzymatic prostaglandins derived directly from PGH_{2}. PGD_{2} is produced abundantly in the CSF by the lipocalin-type PGD synthase, and in the periphery by myeloid cells including mast cells and basophils by a second, hematopoietic-type PGD synthase. PGD_{2} is chemically unstable, and its use and analysis is complicated by its short in vivo half-life. $\Delta^{12}-\mathrm{PGD}_{2}$ is one of the initial chemical decomposition products of $\mathrm{PGD}_{2} . \Delta^{12}-\mathrm{PGD}_{2}$ is an intermediate in the pathway leading to $\Delta^{12}-\mathrm{PGJ}{ }_{2}$, which is a cyclopentenone prostaglandin with antimitotic and carcinogenic activities. ${ }^{1,2}$ The metabolism of $\Delta^{12}-\mathrm{PGD}_{2}$ involves addition of thiol nucleophiles, as is the case with the majority of cyclopentenone prostaglandins. ${ }^{3}$

References

1. Fukushima, M. Prostaglandin J_{2} - anti-tumor and anti-viral activities and the mechanisms involved. Eicosanoids 3(4), 189-199 (1990).
2. Kato, T., Fukushima, M., Kurozumi, S., et al. Antitumor activity of Δ^{7}-prostaglandin A_{1} and Δ^{12}-prostaglandin J_{2} in vitro and in vivo. Cancer Res. 46(7), 3538-3542 (1986).
3. Atsmon, J., Sweetman, B.J., Baertschi, S.W., et al. Formation of thiol conjugates of 9-deoxy- $\Delta^{9}, \Delta^{12}(\mathrm{E})$-prostaglandin D_{2} and $\Delta^{12}(\mathrm{E})$-prostaglandin D_{2}. Biochemistry 29(15), 3760-3765 (1990).
[^0]
[^0]: WARNING
 THIS PRODUCT IS FOR RESEARCH ONLY - NOT FOR HUMAN OR VETERINARY DIAGNOSTIC OR THERAPEUTIC USE.

 ## SAFETY DATA

 This material should be considered hazardous until further information becomes available. Do not ingest, inhale, get in eyes, on skin, or on clothing. Wash thoroughly after handling. Before use, the user must review the complete Safety Data Sheet, which has been sent via email to your institution.

