SREBP-1 Transcription Factor Assay Kit

Item No. 10010854

www.caymanchem.com
Customer Service 800.364.9897
Technical Support 888.526.5351
1180 E. Ellsworth Rd · Ann Arbor, MI · USA
GENERAL INFORMATION

Materials Supplied

Kit components may be stored at -20°C prior to use. For long term storage, the positive control should be thawed on ice, aliquoted at 25 µl/vial, and stored at -80°C. After use we recommend each kit component be stored according to the temperature listed below.

<table>
<thead>
<tr>
<th>Item Number</th>
<th>Item</th>
<th>Quantity/Sizes</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>10006880</td>
<td>Transcription Factor Binding Assay Buffer (4X)</td>
<td>1 vial/3 ml</td>
<td>4°C</td>
</tr>
<tr>
<td>10007472</td>
<td>Transcription Factor Reagent A</td>
<td>1 vial/120 µl</td>
<td>-20°C</td>
</tr>
<tr>
<td>10010893</td>
<td>SREBP-1 Positive Control</td>
<td>1 vial/150 µl</td>
<td>-80°C</td>
</tr>
<tr>
<td>10006882</td>
<td>Transcription Factor Antibody Binding Buffer (10X)</td>
<td>1 vial/3 ml</td>
<td>4°C</td>
</tr>
<tr>
<td>10010894</td>
<td>SREBP-1 Primary Antibody</td>
<td>1 vial/120 µl</td>
<td>-20°C</td>
</tr>
<tr>
<td>400062</td>
<td>Wash Buffer Concentrate (400X)</td>
<td>1 vial/5 ml</td>
<td>RT</td>
</tr>
<tr>
<td>400035</td>
<td>Polysorbate 20</td>
<td>1 vial/3 ml</td>
<td>RT</td>
</tr>
<tr>
<td>10008660</td>
<td>Transcription Factor SREBP Competitor dsDNA</td>
<td>1 vial/120 µl</td>
<td>-20°C</td>
</tr>
<tr>
<td>10008684</td>
<td>Transcription Factor Goat Anti-Rabbit HRP Conjugate</td>
<td>1 vial/120 µl</td>
<td>-20°C</td>
</tr>
<tr>
<td>10008858</td>
<td>Transcription Factor SREBP 96-Well Strip Plate</td>
<td>1 plate</td>
<td>4°C</td>
</tr>
<tr>
<td>400012</td>
<td>96-Well Cover Sheet</td>
<td>1 cover</td>
<td>RT</td>
</tr>
<tr>
<td>10006888</td>
<td>Transcription Factor Developing Solution</td>
<td>1 vial/12 ml</td>
<td>4°C</td>
</tr>
<tr>
<td>10006889</td>
<td>Transcription Factor Stop Solution</td>
<td>1 vial/12 ml</td>
<td>RT</td>
</tr>
</tbody>
</table>

If any of the items listed above are damaged or missing, please contact our Customer Service department at (800) 364-9897 or (734) 971-3335. We cannot accept any returns without prior authorization.
WARNING: THIS PRODUCT IS FOR RESEARCH ONLY - NOT FOR HUMAN OR VETERINARY DIAGNOSTIC OR THERAPEUTIC USE.

Safety Data
This material should be considered hazardous until further information becomes available. Do not ingest, inhale, get in eyes, on skin, or on clothing. Wash thoroughly after handling. Before use, the user must review the complete Safety Data Sheet, which has been sent via email to your institution.

Precautions
Please read these instructions carefully before beginning this assay.

Kit components may be stored at -20°C prior to use. For long term storage, the Positive Control should be thawed on ice, aliquoted at 25 µl/vial and stored at -80°C. If the assay will be used on multiple days, we recommend each kit component be stored according to the temperatures listed in the booklet.

If You Have Problems
Technical Service Contact Information
Phone: 888-526-5351 (USA and Canada only) or 734-975-3888
Fax: 734-971-3641
E-Mail: techserv@caymanchem.com
Hours: M-F 8:00 AM to 5:30 PM EST

In order for our staff to assist you quickly and efficiently, please be ready to supply the lot number of the kit (found on the outside of the box).

Storage and Stability
This kit will perform as specified if stored as directed and used before the expiration date indicated on the outside of the box.

Materials Needed But Not Supplied
1. A plate reader capable of measuring absorbance at 450 nm
2. Adjustable pipettes and a repeating pipettor
3. A source of UltraPure water; glass Milli-Q or HPLC-grade water is acceptable
4. 300 mM dithiothreitol (DTT)
5. Nuclear Extraction Kit (Item No. 10009277) or buffers for preparation of nuclear extracts (see pages 9-12)

NOTE: The components in each kit lot have been quality assured and warranted in this specific combination only; please do not mix them with components from other lots.
SREBP (Sterol Regulatory Element-Binding Protein) transcription factors are members of the basic helix-loop-helix-leucine zipper family of transcription factors. SREBPs activate the expression of more than thirty genes that regulate the synthesis and uptake of cholesterol, fatty acids, triglycerides, and phospholipids. In addition, SREBPs have also been shown to play critical roles in adipocyte differentiation and insulin-dependent gene expression. There are three known isoforms of SREBP: SREBP-1a, SREBP-1c, and SREBP-2. SREBP-1a and SREBP-1c are derived from the same gene, but they differ at the first exon due to alternative splicing. SREBPs are synthesized as membrane-bound precursor proteins anchored on the rough endoplasmic reticulum. These SREBPs are bound to Scap (SREBP cleavage activating protein) and remain bound to the endoplasmic reticulum when sterol concentration is high. However, when sterol concentration is low, the SREBP-Scap complex exits the endoplasmic reticulum and enters the Golgi. In the Golgi, the SREBPs undergo a sequential proteolytic two-step cleavage process by S1P and S2P that release the NH$_2$-terminal active domain from the membrane. These newly cleaved SREBPs contain a nuclear localization signal that binds directly to importin, allowing the SREBPs to enter the nucleus (nSREBPs). In the nucleus, the SREBPs bind to SRE sequences, upregulating genes required for sterol synthesis and regulation.

SREBP-1 acts primarily to activate genes in fatty acid synthesis. Nuclear SREBP-1 up-regulates gene expression of a group of target lipogenic enzymes such as acetyl CoA carboxylase, fatty acid synthase, and long chain fatty acid elongase. In addition, SREBP-1 may also contribute to the regulation of glucose uptake and synthesis through induction of glucokinase, a key enzyme in glycolysis. SREBP-1 has many important clinical implications in the treatment of many diseases including obesity, diabetes mellitus, insulin resistance, and non-alcoholic fatty liver disease (NAFLD).

About This Assay

Cayman’s SREBP-1 Transcription Factor Assay is a non-radioactive, sensitive method for detecting specific transcription factor DNA binding activity in nuclear extracts. A 96-well enzyme-linked immunosorbent assay (ELISA) replaces the cumbersome radioactive electrophoretic mobility shift assay (EMSA). A specific double stranded DNA (dsDNA) sequence containing the SREBP response element is immobilized onto the wells of a 96-well plate (see Figure 1, on page 8). SREBP-1 contained in a nuclear extract binds specifically to the SREBP response element. SREBP-1 is detected by addition of a specific primary antibody directed against SREBP-1. A secondary antibody conjugated to HRP is added to provide a sensitive colorimetric readout at 450 nm. Cayman’s SREBP-1 Transcription Factor Assay detects human, rat, and murine SREBP-1.
Sample Buffer Preparation

All buffers and reagents below are used for preparation of Nuclear Extracts and can be purchased directly from Cayman. Alternatively, Cayman’s Nuclear Extraction Kit (Item No. 10009277) can be used to isolate Nuclear Proteins.

1. **Nuclear Extraction PBS (10X)**

 1.71 M NaCl, 33.53 mM KCl, 126.8 mM Na$_2$HPO$_4$, 22.04 mM KH$_2$PO$_4$, pH 7.4

2. **Nuclear Extraction PBS (1X)**

 Dilute 100 ml of 10X stock with 900 ml distilled H$_2$O

3. **Nuclear Extraction Phosphatase Inhibitor Cocktail (50X)**

 0.5 M NaF
 0.05 M β-glycerophosphate
 0.05 M Na$_3$OV$_4$
 Store at -80°C

4. **Nuclear Extraction PBS/Phosphatase Inhibitor Solution (1X)**

 Add 200 μl of 50X Phosphatase Inhibitor Solution to 10 ml of 1X Nuclear Extraction PBS, mix well, and keep on ice. Make fresh daily.

Figure 1. Schematic of the Transcription Factor Binding Assay
5. **Nuclear Extraction Protease Inhibitor Cocktail (100X)**
 - 10 mM AEBSF
 - 0.5 mM Bestatin
 - 0.2 mM Leupeptin Hemisulfate Salt
 - 0.15 mM E-64
 - 0.1 mM Pepstatin A
 - 0.008 mM Aprotinin from Bovine Lung
 Made in DMSO, store at -20°C

6. **Nuclear Extraction Hypotonic Buffer (10X)**
 - 100 mM HEPES, pH 7.5, containing 40 mM NaF, 100 μM Na₂MoO₄, and 1 mM EDTA
 Store at 4°C.

7. **Complete Hypotonic Buffer (1X)**
 Prepare as outlined in Table 1. The phosphatase and protease inhibitors lose activity shortly after dilution; therefore any unused 1X Complete Hypotonic Buffer should be discarded.

<table>
<thead>
<tr>
<th>Reagent</th>
<th>150 mm plate</th>
<th>1.5 x 10⁷ cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypotonic Buffer (10X)</td>
<td>100 µl</td>
<td></td>
</tr>
<tr>
<td>Phosphatase Inhibitors (50X)</td>
<td>20 µl</td>
<td></td>
</tr>
<tr>
<td>Protease Inhibitors (100X)</td>
<td>10 µl</td>
<td></td>
</tr>
<tr>
<td>Distilled Water</td>
<td>870 µl</td>
<td></td>
</tr>
<tr>
<td>Total Volume</td>
<td>1,000 µl</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Preparation of Complete Hypotonic Buffer

8. **Nonidet P-40 Assay Reagent (10%)**
 Nonidet P-40 or suitable substitute at a concentration of 10% (v/v) in H₂O
 Store at room temperature.

9. **Nuclear Extraction Buffer (2X)**
 - 20 mM HEPES, pH 7.9, containing 0.2 mM EDTA, 3 mM MgCl₂, 840 mM NaCl, and 20% glycerol (v/v)
 Store at 4°C.
10. Complete Nuclear Extraction Buffer (1X)

Prepare as outlined in Table 2. Some of the phosphatase and protease inhibitors lose activity shortly after dilution; therefore any remaining 1X Extraction Buffer should be discarded.

<table>
<thead>
<tr>
<th>Reagent</th>
<th>150 mm plate ~1.5 x 10^7 cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear Extraction Buffer (2X)</td>
<td>75 µl</td>
</tr>
<tr>
<td>Protease Inhibitors (100X)</td>
<td>1.5 µl</td>
</tr>
<tr>
<td>Phosphatase Inhibitors (50X)</td>
<td>3.0 µl</td>
</tr>
<tr>
<td>DTT (10 mM)</td>
<td>15 µl</td>
</tr>
<tr>
<td>Distilled Water</td>
<td>55.5 µl</td>
</tr>
<tr>
<td>Total Volume</td>
<td>150 µl</td>
</tr>
</tbody>
</table>

Table 2. Preparation of Complete Nuclear Extraction Buffer

Purification of Cellular Nuclear Extracts

Cayman’s Nuclear Extraction Kit (Item No. 10009277) can be used to isolate nuclear proteins. Alternatively, the procedure below can be used for a 15 ml cell suspension grown in a T75 flask or adherent cells (100 mm dish 80-90% confluent) where 10^7 cells yields approximately 50 μg of nuclear protein.

1. Collect 10^7 cells in pre-chilled 15 ml tubes.
2. Centrifuge suspended cells at 300 x g for five minutes at 4°C.
3. Discard the supernatant. Resuspend the cell pellet in 5 ml of ice-cold 1X Nuclear Extraction PBS/Phosphatase Inhibitor Solution and centrifuge at 300 x g for five minutes at 4°C. Repeat one time.
4. Discard the supernatant. Add 500 µl ice-cold 1X Complete Hypotonic Buffer. Mix gently by pipetting and transfer resuspended pellet to pre-chilled 1.5 ml microcentrifuge tube.
5. Incubate cells on ice for 15 minutes allowing cells to swell.
6. Add 100 µl of 10% Nonidet P-40. Mix gently by pipetting.
7. Centrifuge for 30 seconds (pulse spin) at 4°C in a microcentrifuge. Transfer the supernatant which contains the cytosolic fraction to a new tube and store at -80°C.
8. Resuspend the pellet in 100 µl ice-cold Complete Nuclear Extraction Buffer (1X) (with protease and phosphatase inhibitors). Vortex 15 seconds at the highest setting and then gently rock the tube on ice for 15 minutes using a shaking platform. Vortex sample for 30 seconds at the highest setting and gently rock for an additional 15 minutes.
9. Centrifuge at 14,000 x g for 10 minutes at 4°C. The supernatant contains the nuclear fraction. Aliquot to clean chilled tubes, flash freeze, and store at -80°C. Avoid freeze/thaw cycles. The extracts are ready to use in the assay.
10. Keep a small aliquot of the nuclear extract to quantitate the protein concentration.
Reagent Preparation

1. Transcription Factor Antibody Binding Buffer (10X)
 One vial (Item No. 10006882) contains 3 ml of a 10X stock of Transcription Factor Antibody Binding Buffer (ABB) to be used for diluting the primary and secondary antibodies. To prepare 1X ABB, dilute 1:10 by adding 27 ml of UltraPure water. Store at 4°C for up to six months.

2. Wash Buffer Concentrate (400X)
 One vial (Item No. 400062) contains 5 ml of 400X Wash Buffer. Dilute the contents of the vial to a total volume of 2 liters with UltraPure water and add 1 ml of Polysorbate 20 (Item No. 400035). NOTE: Polysorbate 20 is a viscous liquid and cannot be measured by a pipette. A positive displacement device such as a syringe should be used to deliver small quantities accurately. A smaller volume of Wash Buffer Concentrate can be prepared by diluting the Wash Buffer Concentrate 1:400 and adding Polysorbate 20 (0.5 ml/liter of Wash Buffer). Store at 4°C for up to six months.

3. Transcription Factor Binding Assay Buffer (4X)
 One vial (Item No. 10006880) contains 3 ml of a 4X stock of Transcription Factor Binding Assay Buffer (TFB). Prepare Complete TFB Buffer (CTFB) immediately prior to use in 1.5 ml centrifuge tubes or 15 ml conical tubes as outlined in Table 1, on page 11. This buffer is now referred to as CTFB. It is recommended that the CTFB be used the same day it is prepared.

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume/Well</th>
<th>Volume/Strip</th>
<th>Volume/96-well plate</th>
</tr>
</thead>
<tbody>
<tr>
<td>UltraPure water</td>
<td>73 µl</td>
<td>584 µl</td>
<td>7,008 µl</td>
</tr>
<tr>
<td>Binding Assay Buffer (4X)</td>
<td>25 µl</td>
<td>200 µl</td>
<td>2,400 µl</td>
</tr>
<tr>
<td>Reagent A (Item No. 10007472)</td>
<td>1 µl</td>
<td>8 µl</td>
<td>96 µl</td>
</tr>
<tr>
<td>300 mM DTT</td>
<td>1 µl</td>
<td>8 µl</td>
<td>96 µl</td>
</tr>
<tr>
<td>Total Required</td>
<td>100 µl</td>
<td>800 µl</td>
<td>9,600 µl</td>
</tr>
</tbody>
</table>

Table 3. Preparation of Complete Transcription Factor Binding Buffer

4. Transcription Factor SREBP-1 Positive Control
 One vial (Item No. 10010893) contains 150 µl of clarified cell lysate. This lysate is provided as a positive control for SREBP-1 activation; it is not intended for plate to plate comparisons. The Positive Control provided is sufficient for 15 reactions and will provide a strong signal (>0.5 AU at 450 nm) when used at 10 µl/well. When using this Positive Control, a decrease in signal may occur with repeated freeze/thaw cycles. It is recommended that the Positive Control be aliquoted at 25 µl per vial and stored at -80°C to avoid loss in signal from repeated freeze/thaw cycles.
Plate Set Up

There is no specific pattern for using the wells on the plate. A typical layout of SREBP-1 positive control (PC), competitor dsDNA (C1), and samples of nuclear extracts (S1-S44) to be measured in duplicate is given below in Figure 2. We suggest you record the contents of each well on the template sheet provided (see page 30).

![Plate Layout](image)

- **S1-S44** - Sample Wells
- **NSB** - Non-specific Binding Wells
- **PC** - Positive Control Wells
- **Blk** - Blank Wells
- **C1** - Competitor dsDNA Wells

Figure 2. Sample plate format

Pipetting Hints

- Use different tips to pipette each reagent.
- Before pipetting each reagent, equilibrate the pipette tip in that reagent (i.e., slowly fill the tip and gently expel the contents, repeat several times).
- Do not expose the pipette tip to the reagent(s) already in the well.

General Information

- It is not necessary to use all the wells on the plate at one time; however a Positive Control should be run every time.
- For each plate or set of strips, it is recommended that two Blks, two NSB, and two PC wells be included.

Performing the Assay

Binding of active SREBP-1 to the consensus sequence:

1. Equilibrate the plate and buffers to room temperature prior to opening. Remove the plate from the foil and select the number of strips needed. The 96-well plate supplied with this kit is ready to use. NOTE: If you are not using all of the strips at once, place the unused strips back in the plate packet and store at 4°C. Be sure that the packet is sealed with the desiccant inside.

2. Prepare the CTFB as outlined in Table 3, on page 15.
3. Add appropriate amount of reagent(s) listed below to the designated wells as follows:
 - Blk: add 100 μl of CTFB to designated wells.
 - NSB: add 100 μl of CTFB to designated wells. Do not add samples or Positive Control to these wells.
 - C1: Add 80 μl of CTFB prior to adding 10 μl of Transcription Factor SREBP Competitor dsDNA (Item No. 10008860) to designated wells. Add 10 μl of control cell lysate or sample.
 - NOTE: Competitor dsDNA must be added prior to adding the Positive Control or nuclear extracts.
 - S1-S44: Add 90 μl of CTFB followed by 10 μl of Nuclear Extract to designated wells. A protocol for isolation of nuclear extracts is given on page 13.
 - PC: Add 90 μl of CTFB followed by 10 μl of Positive Control to appropriate wells.
4. Use the cover provided to seal the plate. Incubate overnight at 4°C or one hour at room temperature without agitation (incubation for one hour will result in a less sensitive assay).
5. Empty the wells and wash five times with 200 μl of 1X Wash Buffer. After each wash empty the wells in the sink. After the final wash (wash #5), tap the plate on a paper towel to remove any residual Wash Buffer.

Addition of Transcription Factor SREBP-1 Primary Antibody
1. Dilute the Transcription Factor SREBP-1 Primary Antibody (Item No. 10010894) 1:100 in 1X ABB as outlined in Table 4 below. Add 100 μl of diluted SREBP-1 Primary Antibody to each well except the Blk wells.

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume/Well</th>
<th>Volume/Strip</th>
<th>Volume/96-well plate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1X ABB</td>
<td>99 μl</td>
<td>792 μl</td>
<td>9,504 μl</td>
</tr>
<tr>
<td>SREBP-1 Primary Antibody</td>
<td>1 μl</td>
<td>8 μl</td>
<td>96 μl</td>
</tr>
<tr>
<td>Total required</td>
<td>100 μl</td>
<td>800 μl</td>
<td>9,600 μl</td>
</tr>
</tbody>
</table>

Table 4. Dilution of Primary Antibody
2. Use the adhesive cover provided to seal the plate.
3. Incubate the plate for one hour at room temperature without agitation.
4. Empty the wells and wash each well five times with 200 μl of 1X Wash Buffer. After each wash, empty the contents of the plate into the sink. After the final wash (wash #5), tap the plate three to five times on a paper towel to remove any residual Wash Buffer.
Addition of the Transcription Factor Goat Anti-Rabbit HRP Conjugate

1. Dilute the Transcription Factor Goat Anti-Rabbit HRP Conjugate 1:100 in 1X ABB as outlined in Table 5 below. Add 100 μl of diluted HRP Conjugated to each well except the Blk wells.

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume/Well</th>
<th>Volume/Strip</th>
<th>Volume/96-well plate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1X ABB</td>
<td>99 µl</td>
<td>792 µl</td>
<td>9,504 µl</td>
</tr>
<tr>
<td>Goat Anti-Rabbit HRP Conjugate</td>
<td>1 µl</td>
<td>8 µl</td>
<td>96 µl</td>
</tr>
<tr>
<td>Total required</td>
<td>100 µl</td>
<td>800 µl</td>
<td>9,600 µl</td>
</tr>
</tbody>
</table>

Table 5. Dilution of Secondary Antibody

2. Use the adhesive cover provided to seal the plate.

3. Incubate for one hour at room temperature without agitation.

4. Empty the wells and wash five times with 200 µl of 1X Wash Buffer. After each wash, empty the contents of the plate into the sink. After the final wash (wash #5), tap the plate three to five times on a paper towel to remove any residual Wash Buffer.

Develop and Read the Plate

1. Add 100 µl of Transcription Factor Developing Solution (Item No. 10006888), which has been equilibrated to room temperature, to each well being used.

2. Incubate the plate for 15 to 45 minutes at room temperature with gentle agitation protected from light. Allow the wells to turn medium to dark blue prior to adding Transcription Factor Stop Solution (Item No. 10006889). (This reaction can be monitored by taking absorbance measurements at 655 nm prior to stopping the reactions; An OD_{655} of 0.4-0.5 yields an OD_{450} of approximately 1). Monitor development of sample wells to ensure adequate color development prior to stopping the reaction. NOTE: Do not overdevelop; however PC wells may need to overdevelop to allow adequate color development in sample wells.

3. Add 100 µl of Stop Solution per well being used. The solution within the wells will change from blue to yellow after adding the Stop Solution.

4. Read absorbance at 450 nm within five minutes of adding the Stop Solution. Blank the plate reader according to the manufacturer’s requirements using the blank wells.
Assay Procedure Summary

NOTE: This procedure is provided as a quick reference for experienced users. Follow the detailed procedure when initially performing the assay.

1. Prepare CTFB as described in the Pre-Assay Preparation section, Table 3 on page 15.
2. Add 90 µl CTFB per sample well (80 µl if adding Competitive dsDNA), 100 µl to Blk and NSB wells).
3. Add 10 µl of Competitive dsDNA (optional) to appropriate wells.
4. Add 10 µl of Positive Control to appropriate wells.
5. Add 10 µl of Sample containing SREBP-1 to appropriate wells.
6. Incubate overnight at 4°C or one hour at room temperature without agitation.
7. Wash each well five times with 200 µl of 1X Wash Buffer.
8. Add 100 µl of diluted SREBP-1 Antibody per well (except Blk wells).
9. Incubate one hour at room temperature without agitation.
10. Wash each well five times with 200 µl of 1X Wash Buffer.
11. Add 100 µl of diluted Secondary Antibody (except Blk wells).
12. Incubate one hour at room temperature without agitation.
13. Wash each well five times with 200 µl of 1X Wash Buffer.
14. Add 100 µl of Developing Solution per well.
15. Incubate 15 to 45 minutes with gentle agitation.
16. Add 100 µl of Stop Solution per well.
17. Measure the absorbance at 450 nm.

Table 6. Quick Protocol Guide

<table>
<thead>
<tr>
<th>Steps</th>
<th>Reagent</th>
<th>Blk</th>
<th>NSB</th>
<th>PC</th>
<th>C1</th>
<th>S1-S44</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Add reagents</td>
<td>CTFB</td>
<td>100 µl</td>
<td>100 µl</td>
<td>90 µl</td>
<td>80 µl</td>
<td>90 µl</td>
</tr>
<tr>
<td></td>
<td>Competitive dsDNA</td>
<td>10 µl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Positive Control</td>
<td>10 µl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Samples</td>
<td>10 µl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Incubate</td>
<td>Cover plate and incubate overnight at 4°C or one hour at RT without agitation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Wash</td>
<td>Wash all wells five times</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Add reagents</td>
<td>Primary Antibody</td>
<td>100 µl</td>
<td>100 µl</td>
<td>100 µl</td>
<td>100 µl</td>
<td></td>
</tr>
<tr>
<td>5. Incubate</td>
<td>Cover plate and incubate one hour at RT without agitation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Wash</td>
<td>Wash all wells five times</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Add reagents</td>
<td>Secondary Antibody</td>
<td>100 µl</td>
<td>100 µl</td>
<td>100 µl</td>
<td>100 µl</td>
<td></td>
</tr>
<tr>
<td>8. Incubate</td>
<td>Cover plate and incubate one hour at RT without agitation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Wash</td>
<td>Wash all wells five times</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Add reagents</td>
<td>Developer Solution</td>
<td>100 µl</td>
<td>100 µl</td>
<td>100 µl</td>
<td>100 µl</td>
<td>100 µl</td>
</tr>
<tr>
<td>11. Incubate</td>
<td>Monitor development in wells</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Add reagents</td>
<td>Stop Solution</td>
<td>100 µl</td>
<td>100 µl</td>
<td>100 µl</td>
<td>100 µl</td>
<td>100 µl</td>
</tr>
<tr>
<td>13. Read</td>
<td>Read plate at wavelength of 450 nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Performance Characteristics

Figure 3. Assay of recombinant SREBP-1 from *E. coli* cell lysates

Figure 4. Assay of HeLa and HepG2 cell lysates
Figure 5. Assay of recombinant SREBP-1 and SREBP-2 in Cayman’s SREBP-1 and SREBP-2 Transcription Factor Assay kits. The results demonstrate little to no cross reactivity of SREBPs in the opposing assay.

Cross Reactivity: (+) SREBP-1a, SREBP-1b, and SREBP-1c

Interferences

The following reagents were tested for interference in the assay.

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Will Interfere (Yes or No)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGTA (≤1 mM)</td>
<td>No</td>
</tr>
<tr>
<td>EDTA (≤0.5 mM)</td>
<td>No</td>
</tr>
<tr>
<td>ZnCl (any concentration)</td>
<td>Yes</td>
</tr>
<tr>
<td>DTT (between 1 and 5 mM)</td>
<td>No</td>
</tr>
<tr>
<td>Dimethylsulfoxide (≤1.5%)</td>
<td>No</td>
</tr>
</tbody>
</table>

Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Causes</th>
<th>Recommended Solutions</th>
</tr>
</thead>
</table>
| No signal or weak signal in control wells | A. Omission of key reagent
B. Plate reader settings not correct
C. Reagent/reagents expired
D. Salt concentrations affected binding between DNA and protein
E. Developing reagent used cold
F. Developing reagent not added to correct volume | A. Check that all reagents have been added and in the correct order; perform the assay using the Positive Control
B. Check wavelength setting on plate reader and change to 450 nm
C. Check expiration date on reagents
D. Reduce the amount of nuclear extract used in the assay, or reduce the amount of salt in the nuclear extracts (alternatively can perform buffer exchange)
E. Prewarm the Developing Solution to room temperature prior to use
F. Check pipettes to ensure correct amount of Developing Solution was added to wells |
<table>
<thead>
<tr>
<th>Problem (cont.)</th>
<th>Possible Causes (cont.)</th>
<th>Recommended Solutions (cont.)</th>
</tr>
</thead>
</table>
| High signal in all wells | A. Incorrect dilution of antibody (too high)
B. Improper/inadequate washing of wells
C. Over-developing | A. Check antibody dilutions and use amounts outlined in instructions
B. Follow the protocol for washing wells using the correct number of times and volumes
C. Decrease the incubation time when using the developing reagent |
| High background (NSB) | Incorrect dilution of antibody (too high) | Check antibody dilutions and use amounts outlined in the instructions |
| Weak signal in sample wells | A. Sample concentration is too low
B. Incorrect dilution of antibody
C. Salt concentrations affecting binding between DNA and protein | A. Increase the amount of nuclear extract used; loss of signal can occur with multiple freeze/thaw cycles of the sample; prepare fresh nuclear extracts and aliquot as outlined in product insert
B. Check antibody dilutions and use amounts outlined in the instructions
C. Reduce the amount of nuclear extract used in the assay or reduce the amount of salt in the nuclear extracts (alternatively can perform buffer exchange) |

References

Warranty and Limitation of Remedy

Buyer agrees to purchase the material subject to Cayman’s Terms and Conditions. Complete Terms and Conditions including Warranty and Limitation of Liability information can be found on our website.

This document is copyrighted. All rights are reserved. This document may not, in whole or part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form without prior consent, in writing, from Cayman Chemical Company.

©10/20/2022, Cayman Chemical Company, Ann Arbor, MI, All rights reserved. Printed in U.S.A.