PRODUCT INFORMATION

HDAC3/NCOR2 (human, recombinant)

Item No. 10009232

Overview and Properties

Synonyms: Histone Deacetylase 3/Nuclear Receptor Corepressor 2

Source: 50 µg of a complex of full-length recombinant C-terminal His-tagged HDAC3 and

recombinant N-terminal GST-tagged NCOR2 amino acids 395-489, co-expressed in

baculovirus expression system

Amino Acids: HDAC3 = 2-428 (full length), NCOR2 = 395-489 (truncation)

Molecular Weight: 49.7 kDa (HDAC3)/37.6 kDa (NCOR2)

Storage: -80°C (as supplied)

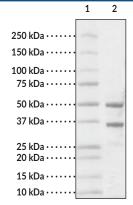
Stability: ≥6 months

batch specific (≥90% estimated by SDS-PAGE) **Purity:**

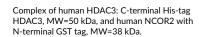
Supplied in: 40 mM Tris-HCl, pH 8.0, with 110 mM sodium chloride, 2.2 mM potassium chloride,

250 mM imidazole, and 20% glycerol

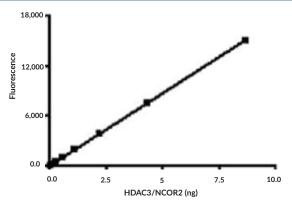
Protein


Concentration: batch specific mg/ml Specific Activity: batch specific U/mg

Unit Definition: One unit is the amount of enzyme required to release 1 pmol of acetate per minute at


37°C in 25 mM Tris/HCl, pH 8.0, 137 mM NaCl, 2.7 mM KCl, 1 mM MgCl₂, 0.1 mg/ml

BSA, and 20 µM fluorogenic HDAC substrate 3


Images

Lane 1: MW Markers Lane 2: HDAC3/NCOR2 (4 µg)

Representative gel image shown: actual purity may vary between each batch.

HDAC3/NCOR2 Deacetylase Activity

WARNING
THIS PRODUCT IS FOR RESEARCH ONLY - NOT FOR HUMAN OR VETERINARY DIAGNOSTIC OR THERAPEUTIC USE.

SAFETY DATA
This material should be considered hazardous until further information becomes available. Do not ingest, inhale, get in eyes, on skin, or on clothing. Wash thoroughly after handling. Before use, the user must review the complete Safety Data Sheet, which has been sent via email to your institution.

WARRANTY AND LIMITATION OF REMEDY

Buyer agrees to purchase the material subject to Cayman's Terms and Conditions. Complete Terms and Conditions including Warranty and Limitation of Liability information can be found on our website

Copyright Cayman Chemical Company, 06/21/2021

CAYMAN CHEMICAL

1180 EAST ELLSWORTH RD ANN ARBOR, MI 48108 · USA PHONE: [800] 364-9897

[734] 971-3335

FAX: [734] 971-3640 CUSTSERV@CAYMANCHEM.COM WWW.CAYMANCHEM.COM

PRODUCT INFORMATION

Description

Histone deacetylases (HDACs) catalyze the deacetylation of core histones, resulting in tightening of nucleosomal integrity, restriction of the access of transcription factors, and suppression of transcription. HDACs also play an important role in mediating nuclear receptor functions by forming co-repressor complexes with nuclear receptors in the absence of ligands. They are also involved in mediating other transcription regulatory pathways by associating with transcription factors, such as E2F, TFIIE, TFIIF, NF-κB, p300, Stat3, p53, and the retinoblastoma (Rb) protein.¹

HDAC3 is a Class I HDAC which is related to the yeast HDAC Rpd3.² It is primarily localized to the nucleus with ubiquitous distribution throughout human cell lines and tissues. By modifying chromatin structure and other non-histone proteins, HDACs play important roles in controlling complex biological events, including cell development, differentiation, programmed cell death, angiogenesis, and inflammation. Considering these major roles, it is conceivable that dysregulation of HDACs and subsequent imbalance of acetylation and deacetylation may be involved in the pathogenesis of various diseases, including cancer and inflammatory diseases.²

References

- 1. Lin, H.-Y., Chen, C.-S., Lin, S.-P., et al. Targeting histone deacetylase in cancer therapy. *Medicinal Research Reviews* **26(4)**, 397-413 (2006).
- 2. Huang, L. Targeting histone deacetylases for the treatment of cancer and inflammatory diseases. *J. Cell. Physiol.* **39.1**, 611-616 (2006).

ANN ARBOR, MI 48108 · USA PHONE: [800] 364-9897