RAINBOW TROUT VITELLOGENIN ELISA KIT PROD. NO.: V01004402 ### CONTENTS | A. | Introduction | 3 | |----|--|----| | В. | Safety instructions | 4 | | C. | Storage and stability | 4 | | D. | Warranty and limitation of remedy | 4 | | E. | Assay principle | 5 | | F. | Kit contents | 6 | | G. | Additional reagents and equipment required | 6 | | H. | General notes | 7 | | l. | Preparation of buffers/reagents | 8 | | J. | Assay procedure | 8 | | K. | Calculation of results | 10 | | L. | Reproducibility of the assay | 14 | | M. | References | 14 | | N. | Quick guide | 15 | #### A. INTRODUCTION Detection of the egg yolk precursor vitellogenin (Vtg) in blood and tissue samples of juvenile and male fish is a simple and sensitive biomarker for endocrine disrupting chemicals (EDCs) with estrogenic effects (Arukwe & Goksøyr, 2003; Sumpter & Jobling, 1995). Measurement of Vtg has become an accepted routine screening test for estrogenic and anti-androgenic effects of EDCs in fish. This Enzyme-Linked Immunosorbent Assay (ELISA) can readily be combined with standard fish toxicology tests developed under the framework of governmental organizations, e.g. the OECD and the US EPA. This ELISA is developed for a standard test species used in many ecotoxicology laboratories throughout the world, the rainbow trout (*Oncorhynchus mykiss*). FIGURE 1: RAINBOW TROUT (ONCORHYNCHUS MYKISS) PHOTO: EILIV LEREN #### **B. SAFETY INSTRUCTIONS** For research use only. Not for human use or drug use. Not for clinical diagnostic use. These reagents contain sodium azide as preservative. Do not use internally or externally in humans or animals. As all chemicals should be considered potentially hazardous, it is advisable to wear suitable protective clothing during handling of this kit. Avoid contact with skin and eyes. #### C. STORAGE AND STABILITY Store the kit at 2-8°C upon arrival. Do not freeze. See expiry date on the kit box for stability of the kit. #### D. WARRANTY AND LIMITATION OF REMEDY Biosense Laboratories AS (hereafter: Biosense) makes no warranty of any kind, expressed or implied, including, but not limited to, the warranties of fitness for a particular purpose and merchantability, which extends beyond the description of the chemicals on the face hereof, except that the material will meet our specifications at the time of delivery. Buyer's exclusive remedy and Biosense's sole liability hereunder shall be limited to refund of the purchase price of, or at Biosense's option, the replacement of, all material that does not meet our specifications. Biosense shall not be liable otherwise or for incidental or consequential damages, including, but not limited to, the costs of handling. Said refund or replacement is conditioned on Buyer giving written notice to Biosense within thirty (30) days after arrival of the material at its destination, and Buyer treating the material as outlined in the product data sheet and/or kit insert after arrival. Failure of Buyer to give said notice within said thirty (30) days, or failure of Buyer in treating the material as outlined in the product data sheet and/or kit insert shall constitute a waiver by Buyer of all claims hereunder with respect to said material. The responsibility of all patent considerations in the use of our products rests solely with the user. #### E. ASSAY PRINCIPLE This ELISA utilizes specific binding between antibodies and vitellogenin (Vtg) to quantify Vtg in samples from rainbow trout (Figure 2). The wells of microtiter plates have been pre-coated with a specific capture antibody that binds to Vtg in standard and samples added to the wells. A different Vtg-specific detecting antibody, labelled with the enzyme acetylcholinesterase (AChE) is added to create a sandwich of Vtg and antibody. The enzyme activity is determined by adding a substrate that gives a coloured product, and the colour intensity is directly proportional to the amount of Vtg present. FIGURE 2: ASSAY FORMAT FOR THE SANDWICH ELISA #### F. KIT CONTENTS | | | 1-plate kit | 5-plate kit | |----|--|-------------|-------------| | A) | 96 well microtiter plates, pre-coated | 1 | 5 | | B) | Plate sealers | 2 | 10 | | C) | PBS/Tween tablets | 1 | 2 | | D) | Dilution buffer, concentrated 10x | 1x 10 ml | 2x 25 ml | | E) | Detecting antibody, concentrated 100x | 1 vial | 1 vial | | F) | Ellman's reagent | 1 vial | 2 vials | | G) | Rainbow trout Vtg standard * | 1 vial | 2 vials | | | Purified, lyophilized Vtg from rainbow trout | | | ^{*}The lyophilized rainbow trout Vtg standard was calibrated against purified rainbow trout Vtg quantified using the following formula (derived from Norberg & Haux, 1988): Vtg concentration (mg/ml) = Absorbance at 280 nm/0.66. This quantification procedure was verified by quantitative amino acid analysis. ### G. ADDITIONAL REAGENTS AND EQUIPMENT REQUIRED In addition to the reagents supplied with the kit, the following reagents and equipment are required and/or recommended to perform the assay: - Microtiter plate reader (wavelength 405-420 nm) - Orbital plate shaker (400 rotations/min) - Pipettes with disposable plastic tips (5-1000 μl) - Multi-channel or stepper pipette with plastic tips (50 and 100 µl) - Test tubes (1-50 ml) - Microtiter plate washing device (a manual or automatic plate washer is recommended, but a squeeze bottle or a multichannel/ stepper pipette can also be used) - Vortexer - · Crushed ice #### H. GENERAL NOTES - 1. Read the complete procedure before starting the assay. For experienced users, a guick guide can be found on the inside back cover of the protocol. - **2.** Store kit according to instructions. Do not use kit components after the expiration date. - **3.** The plate sealers are used to seal the plates during incubations. Care should be taken not to contaminate the plate sealers when removing them from the plates. - **4.** After each wash, empty the plate completely by tapping it against a pile of paper towels until no fluid is left in the wells. - 5. A dilution series of purified rainbow trout Vtg standard should be run in every assay. One standard curve is sufficient for a full five-plate assay. A five-plate kit contains two vials of Vtg, sufficient to run two separate assays (for example 2 plates + 3 plates). - **6.** Reconstituted Vtg should not be frozen and re-used. - **7.** NSB wells should be included on every plate. These wells are used to determine Non-Specific Binding (unspecific background signal). - **8.** According to the assay procedure, an orbital plate shaker (400 rotations / min) should be used in step 10 and 13. If an orbital plate shaker is not available, alternative incubation conditions without shaking may be used: Step 10 (detecting antibody): 1 hour at 37°C. Step 13 (development): 1 hour at room temperature. **Please note:** These incubation conditions will result in slightly decreased sensitivity and/or a more narrow working range. - **9.** Unused pre-coated microtiter plates should be stored airtight with enclosed desiccant at 2-8°C. - **10.** In order to obtain reliable results, several common sources of error should be avoided. Important factors to increase reliability are: - Careful and precise pipetting is essential at every step in the assay. Reverse pipetting of the Dilution buffer is recommended to increase precision. - Adding sample and standard dilutions to the plate in triplicates, instead of duplicates, will increase precision. - Avoid shaking and excess foaming when preparing dilutions. Using a vortexer is recommended. #### I. PREPARATION OF BUFFERS/REAGENTS 1. Washing buffer (PBS, 0.05% Tween-20): 1-plate kit: dissolve one small buffer tablet (bag C) in 500 ml distilled water. 5-plate kit: dissolve one large buffer tablet (bag C) in 1000 ml distilled water. Store at 2-8°C (stable for at least one month). 2. Dilution buffer: 1-plate kit: Dilute the content of one vial of Dilution buffer concentrate (vial D, 10 ml) with 90 ml of distilled water. 5-plate kit: Dilute the contents of one vial of Dilution buffer concentrate (vial D, 25 ml) with 225 ml of distilled water. Rinse the vial to ensure that any precipitated salts are included in the final solution. Stir until all crystals are dissolved. Store at 2-8°C (stable for at least two months). 3. Substrate solution (Ellman's reagent, prepare just prior to use): Reconstitute the content of 1 vial (vial F) in 50 ml of distilled water. #### J. ASSAY PROCEDURE ### Preparing dilutions of standard and samples: **Please note:** Vtg is an unstable molecule, and all standard and sample dilutions should be prepared and kept on ice. Frozen samples should be thawed on ice. **1.** Dilution of the Vtg standard: Dissolve the content of one vial of rainbow trout Vtg standard (vial G) in 1.0 ml cold Dilution buffer. **Please note:** Release the vacuum in the vial carefully. Do not remove the grey rubber stopper completely, but add the buffer through the opening at the side. Recap the vial and mix carefully by tipping and vortexing. Avoid foaming. Ensure that all material in the vial is dissolved. Calculate the concentration of Vtg in this stock solution based on the Vtg amount specified on the vial (μ g per vial). Prepare the first dilution step for the standard curve by diluting 50 μ l of the stock solution in an appropriate volume of cold Dilution buffer to give a solution of 200 ng rainbow trout Vtg/ml (see example below). **Example:** A vial containing 10 μg Vtg dissolved in 1.0 ml Dilution buffer gives a solution of 10 μg rainbow trout Vtg/ml. Prepare the first dilution step for the standard curve (200 ng/ml) by adding 50 μl of the 10 μg/ml solution into 2450 μl Dilution buffer. Prepare a two-fold serial dilution in Dilution buffer (e.g. 500 µl rainbow trout Vtg dilution + 500 µl buffer for each standard curve run in the assay). The standard series should include 10 dilution steps, ending with a concentration of 0.39 ng rainbow trout Vtg/ml. 2. Dilution of plasma samples: Given the wide range of Vtg levels found in experimental studies, we recommend preparing at least four different dilutions of each sample in order to hit the linear part of the standard curve. Mix the plasma samples well before preparing the dilutions. We recommend preparing a 1:100 dilution (add 10 μ l sample to 990 μ l cold Dilution buffer), a 1:3000 dilution (add 10 μ l of the 1:100 dilution to 290 μ l cold Dilution buffer), a 1:90 000 dilution (add 10 μ l of the 1:3000 dilution to 290 μ l cold Dilution buffer) and a 1:2 700 000 dilution (add 10 μ l of the 1:90 000 dilution to 290 μ l cold Dilution buffer). Keep the dilutions on ice until use. Keep the dilutions on ice until use. **Please note:** For samples with very low Vtg concentrations it is possible to dilute the plasma sample as little as 1:20 without risk of unspecific interference (plasma effect). ### Incubation with standard and diluted samples: **Please note:** When more than one plate is run in the assay, complete the addition of both standard and sample dilutions on one plate before proceeding to the next plate. See suggested plate layout in Figure 3. - 3. Add 100 µl Dilution buffer to each of the two NSB wells. - **4.** Add in duplicate 100 µl of each rainbow trout Vtg standard dilution. - 5. Add in duplicate 100 µl of each sample dilution. - 6. Seal the plates and incubate at 4°C overnight. | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |---|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|----------|---------------|---------------|---------------| | Α | NSB | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | P1 | | В | + | + | + | + | + | + | | + | ↓ | + | + | + | | C | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P10 | P11 | P12 | P13 | | D | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | + | | Е | P14 | P15 | P16 | P17 | P18 | P19 | P20 | P21 | P22 | P23 | P24 | P25 | | F | \rightarrow \ | \rightarrow | \rightarrow | \rightarrow | | G | P26 | P27 | P28 | P29 | P30 | P31 | P32 | P33 | P34 | P35 | P36 | P37 | | Н | + | \ | + | \ | 1 | 1 | 1 | 1 | \ | \ | \ | 1 | FIGURE 3: SUGGESTED PLATE LAYOUT NSB= NON-SPECIFIC BINDING WELLS 51-510 = STANDARDS 1-10 (0.39-200 NG/ML VTG) P1-P37 = SAMPLES #### Incubation with detecting antibody: - 7. Dilute the detecting antibody (vial E) 1:100 by adding 110 µl to 11 ml Dilution buffer for each plate run in the assay. - 8. Wash the plates three times with 200 µl Washing buffer per well. - 9. Add 100 μ l of the diluted detecting antibody to all wells. - **10.** Seal the plates and incubate on an orbital plate shaker at room temperature (20-25°C) for 1 hour. #### **Development** **Please note:** The substrate solution should be prepared just before proceeding to the next step. - 11. Wash the plates five times with 200 µl Washing buffer per well. - 12. Add 100 µl Substrate solution to all wells. - **13.** Seal the plates and incubate on an orbital plate shaker at room temperature (20-25°C) for 1 hour in the dark (cover the plates with e.g. aluminium foil) - **14.** Remove the plate sealer and read the absorbance in a microtiter plate reader at 405 nm (or in the range 405 420 nm). Read the plates in the same order as the Substrate solution was added. ### K. CALCULATION OF RESULTS #### Subtraction of NSB absorbance values: On each plate, calculate the mean of the absorbance values of the two NSB wells and subtract this value from the absorbance values of all other wells on the same plate. This gives the NSB-corrected absorbance values for standard and sample dilutions. #### Preparation of the standard curve: - Calculate the mean of the NSB-corrected absorbance values for each set of standard duplicates. - 2. Plot absorbance values against the Vtg concentration. Perform a regression analysis, using for example log-log (Figure 4A), linear (Figure 4B) or 4-parameter (Figure 4C) transformation of the data. **Please note:** A 4-parameter transformation will often give a wide working range, but is best suited for standard curves with clear plateaus (as in competitive assays). Care should be taken when employing such a model in this assay. The model will be sensitive to the exclusion of data points, and the upper and lower ends of the curve - should be used with care. - **3.** To determine the working range of the standard curve, omit data points using the following guidelines (see also example below): - The correlation coefficient (R²) should be higher than 0.990 (a perfect regression has an R² value of 1.0). If the R² value is lower than 0.990, exclude points that deviate from the line (usually at the ends) until it is above 0.990. - Data points that *clearly* deviate from the regression line should not be included, even if the R² value is above 0.990. - Data points with NSB-corrected absorbance values lower than 0.020 should not be included in the working range. ### Calculating the concentration of Vtg in unknown samples: - Calculate the mean of the NSB-corrected absorbance values for each set of sample duplicates. - 5. Calculate the Vtg concentration in the diluted sample using the equation for the adjusted standard curve determined above (pt 2-3). Use the following guidelines when determining the Vtg concentration in the samples: Please note: Only sample dilutions with absorbance values that fall within the - standard curve working range should be used (see example below). If all dilutions of a sample give absorbance values outside the working range, the sample should be re-assayed at different dilutions. - **6.** Multiply the Vtg concentration in the diluted sample with the dilution factor to get the Vtg concentration in the original sample. - **Please note:** If more than one dilution of a sample fall within the standard curve working range, the mean Vtg concentration should be calculated. If the different dilutions yield contrasting results, care should be taken to determine which of the dilutions is the most reliable one. Samples having absorbance values close to the ends/ plateaus of the standard curve should be used with care, as these parts of the standard curve are less reliable. Alternatively, the sample should be reassayed with more dilutions. # **Example:** Rainbow trout Vtg standard | Manibow Hout VI | g stariaara | | | | |-------------------|-------------|---------------|--|--| | Vtg concentration | Absorbance | NSB-corrected | | | | (ng/ml) | at 405 nm | absorbance *) | | | | 200 | 2.210 | 2.098 | | | | 100 | 1.896 | 1.784 | | | | 50 | 1.279 | 1.166 | | | | 25 | 0.801 | 0.688 | | | | 12.5 | 0.428 | 0.316 | | | | 6.25 | 0.276 | 0.163 | | | | 3.13 | 0.193 | 0.081 | | | | 1.56 | 0.148 | 0.036 | | | | 0.78 | 0.130 | 0.017 | | | | 0.39 | 0.123 | 0.010 | | | ^{*)} Mean NSB absorbance value: 0.113 FIGURE 4A: LOG-LOG CURVE FIT. OMITTED DATA POINTS ARE SHOWN AS OPEN CIRCLES. FIGURE 4B: LINEAR CURVE FIT. OMITTED DATA POINTS ARE SHOWN AS OPEN CIRCLES. FIGURE 4C: 4-PARAMETER CURVE FIT (SEE NOTE UNDER PT. 2) OMITTED DATA POINTS ARE SHOWN AS OPEN CIRCLES. ### Plasma sample | Dilution | Absorbance | NSB-corrected | Concentration in original sample (ng/ml) | | | | |-----------|------------|---------------|--|-----------|-------------|--| | factor | at 405 nm | absorbance | Linear | Log-log | 4-parameter | | | 100 | 2.307 | 2.194 | over | over | over | | | 3000 | 2.276 | 2.163 | over | over | over | | | 90 000 | 0.645 | 0.532 | 1 769 000 | 1 776 000 | 1 795 000 | | | 2 700 000 | 0.127 | 0.014 | under | under | under | | *Le.* depending on the choice of curve fitting, the concentration of Vtg in the plasma sample is 1.77-1.80 mg/ml. #### L. REPRODUCIBILITY OF THE ASSAY FIGURE 5: INTRA- AND INTER-ASSAY VARIATION. THE ASSAYS WERE PERFORMED WITH A PLASMA SAMPLE FROM AN ESTRADIOL-INDUCED RAINBOW TROUT. | | %CV | n | | |-----------------------|---------|----|--| | Intra-assay variation | 2.4-7.2 | 12 | | | Inter-assay variation | 5.5-11 | 10 | | # M. REFERENCES - Arukwe A. & Goksøyr A. (2003) Eggshell and egg yolk proteins in fish: hepatic proteins for the next generation. Comp. Hepatol. 2:4. http://www.comparative-hepatology.com/content/2/1/4. - Norberg B. & Haux C. (1988). An homologous radioimmunoassay for brown trout (Salmo trutta) vitellogenin. Fish Physiol. Biochem. 5, 59-68. - Sumpter J.P. & Jobling S. (1995). Vitellogenesis as a biomarker for estrogenic contamination of the aquatic environment. *Environ. Health. Persp.* 103 (suppl. 7), 173-178. ### N. QUICK GUIDE - 1. Thaw samples on ice. - 2. Prepare dilutions of standard and samples. - 3. To the pre-coated plates, add 100 μ l Dilution buffer to the NSB wells. Add 100 μ l of diluted standards and samples to the remaining wells. Incubate at 4°C overnight. - 4. Wash the plates 3 times with 200 μ l Washing buffer per well. Add 100 μ l of diluted detecting antibody to all wells. Incubate on an orbital plate shaker at room temperature for 1 hour. - 5. Wash the plates 5 times with 200 μ l Washing buffer per well. Add 100 μ l Substrate solution to all wells. Incubate on an orbital plate shaker at room temperature for 1 hour in the dark. - 6. Read the absorbance at 405 nm. - 7. Calculate the results. ### V01004402 Biosense Laboratories AS HIB-Thormøhlensgt. 55 N-5008 Bergen NORWAY phone +47 55 54 39 66 fax +47 55 54 37 71 biosense@biosense.com http://www.biosense.com